Arterial wave speed is widely used to determine arterial distensibility and has been utilised as a surrogate marker for vascular disease. A comparison between the results of the traditional foot-to-foot method for measuring wave speed to those of the pressure-velocity loop (PU-loop) method is one of the primary objectives of this paper. We also investigate the regional wave speed along the aorta, and the effect of arterial occlusion on the PU-loop measured in the ascending aorta. In 11 anaesthetised dogs, a total occlusion lasting 3 min was produced at four sites: upper thoracic, diaphragm, abdominal and left iliac artery. Pressure and flow in the ascending aorta and pressure proximal to the occlusion site were measured, and data were collected before, during the occlusion and after the occlusion had been removed. In control conditions, the wave speeds determined by the PU-loop in the aortic root were systematically lower than those measured by the foot-to-foot method. During thoracic and diaphragm occlusions, mean aortic pressure and wave speed increased significantly but returned to control values after each occlusion had been removed. The PU-loop is an objective and easy to use method for determining wave speed and can be advantageous for use in short arterial segments when local measurements of pressure and velocity are available.