Background: The pathogenesis of progressive nephropathies involves hemodynamic and inflammatory factors. In the 5/6 nephrectomy model, a selective increase of cyclooxygenase-2 (COX-2) expression was shown, whereas treatment with a nonsteroidal anti-inflammatory or a specific COX-2 inhibitor was renoprotective. We investigated in the 5/6 nephrectomy model (1) the renal distribution of COX-2; (2) the hemodynamic and cellular mechanisms by which chronic COX-2 inhibition prevents renal injury.
Methods: After 5/6 nephrectomy, adult male Munich-Wistar rats were subdivided in two groups: 5/6 nephrectomy (N=20), receiving vehicle, and 5/6 nephrectomy + celecoxib (N=19), treated orally with the COX-2 inhibitor, celecoxib, 10 mg/kg/day. Untreated and treated (celecoxib) sham-operated rats were also studied. Renal hemodynamics were examined at 4 weeks, whereas renal morphologic/immunohistochemical studies were carried at 8 weeks.
Results: At 4 weeks, 5/6 nephrectomy rats exhibited marked systemic and glomerular hypertension. Celecoxib attenuated both systemic and glomerular hypertension, without affecting glomerular filtration rate (GFR). At 8 weeks, glomerulosclerosis and interstitial expansion were evident in 5/6 nephrectomy rats, and markedly attenuated in 5/6 nephrectomy rats given celecoxib. In both sham-operated and 5/6 nephrectomy rats, COX-2 was expressed at the macula densa. The extent of COX-2 expression at the macula densa was nearly tripled by celecoxib, indicating the existence of a feedback mechanism. In 5/6 nephrectomy rats, COX-2 was also expressed in glomeruli, arterioles, and the cortical interstitium, mostly at inflamed or sclerosing areas. Celecoxib markedly attenuated renal injury, inflammation, and ectopic COX-2 expression in 5/6 nephrectomy rats.
Conclusion: Chronic COX-2 inhibition attenuated progressive nephropathy by reducing glomerular hypertension, renal inflammation, and ectopic COX-2 expression, indicating a complex contribution of COX-2 to progressive renal injury in 5/6 nephrectomy rats.