Increasing evidence suggests that parental allergic status, especially that of the mother, may play a unique and important role in influencing the development of fetal infant immune responses to inhaled allergens, independently of genetic predisposition. We have developed an experimental model in dogs where the offspring from allergic parents, when exposed to inhaled allergen, develop allergic sensitization and an asthmatic phenotype, whereas the offspring from non-allergic parents do not. Offspring from ragweed-sensitized (two litters, n = 10) or non-sensitized (two litters, n = 11) Beagle dogs were exposed repeatedly, by inhalation, to ragweed or filtered air (negative control) beginning within 1 week after birth. Serum levels of total immunoglobulin (Ig)E, and ragweed-specific IgE and IgG, were measured at specific time-points up to 40 weeks after birth. Cell differentials in the bronchoalveolar lavage were determined on days 1 and 4 following ragweed instillation into the offspring's lungs at 26 weeks of age. Changes in pulmonary resistance following challenge with histamine and ragweed (five breaths) were measured at 40 weeks after birth. Offspring from sensitized parents exposed to ragweed developed elevated serum total IgE and ragweed-specific IgE and IgG, and showed an increased pulmonary resistance to histamine and ragweed, and increased numbers of eosinophils in bronchoalveolar lavage. In contrast, offspring from non-sensitized parents did not exhibit this immune response. These results suggest that parental allergic sensitivity is important in the development of allergic sensitization and an asthmatic phenotype in the offspring.