The Src family tyrosine kinases (SFKs) play pivotal roles as molecular switches that link a variety of extracellular cues to intracellular signaling pathway. The function of SFK is regulated by phosphorylation at the C-terminal regulatory site mediated by Csk. Recently a novel SFK target Cbp (or PAG) was identified as a membrane-anchored scaffold protein for Csk. To establish the mechanism of Csk/Cbp-mediated regulation of SFK in vivo, we observed dynamic changes in the interaction of Csk with Cbp by utilizing fusion proteins with modified green fluorescent proteins: cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP). Upon SFK activation induced by epidermal growth factor stimulation, fluorescent resonance energy transfer (FRET) response was detected transiently at membrane ruffles in COS1 cells co-expressing CFP-Csk and Cbp-YFP and in cells expressing a single-molecule FRET indicator consisting of CskSH2 and Cbp. Suppression of SFK by PP2 or use of a mutant Cbp that lacks the Csk binding site abolished the FRET response, although a dominant-negative form of Csk enhanced and sustained the FRET response, demonstrating that the FRET response is dependent upon the SFK activity. These observations show that Csk/Cbp-mediated down-regulation of SFK takes place at membrane ruffles in an early stage of epidermal growth factor signaling and suggest that the Csk/Cbp-based FRET indicators are useful for monitoring the status of SFK in living cells.