Recombination is thought to be an important source of genetic variation in herpesviruses. Several studies, performed in vitro or in vivo, detected recombinant viruses after the coinoculation of two distinguishable strains of the same herpesvirus species. However, none of these studies investigated the evolution of the relative proportions of parental versus recombinant progeny populations after coinoculation of the natural host, both during the excretion and the reexcretion period. In the present study, we address this by studying the infection of cattle with bovine herpesvirus 1 (BoHV-1). The recombination of two BoHV-1 mutants lacking either glycoprotein C (gC(-)/gE(+)) or E (gC(+)/gE(-)) was investigated after inoculation of cattle by the natural route of infection. The results demonstrated that (i) recombination is a frequent event in vivo since recombinants (gC(+)/gE(+) and gC(-)/gE(-)) were detected in all coinoculated calves, (ii) relative proportions of progeny populations evolved during the excretion period toward a situation where two populations (gC(+)/gE(+) and gC(-)/gE(+)) predominated without fully outcompeting the presence of the two other detected populations (gC(+)/gE(-) and gC(-)/gE(-)), and (iii) after reactivation from latency, no gC(+)/gE(-) and gC(-)/gE(-) progeny viruses were detected, although gC(+)/gE(-) mutants, when inoculated alone, were detected after reactivation treatment. In view of these data, the importance of gE in the biology of BoHV-1 infection and the role of recombination in herpesvirus evolution are discussed.