Biophotonics techniques, especially those involving fluorescence, are widely used in proteomics to characterize the in vitro interactions between proteins in high-throughput mode. On the other hand, fluorescence-based imaging studies often show that protein activity is regulated through large protein complexes that transiently form at specific sites in the cell. One could therefore argue that a systematic functional analysis of the human proteome requires technologies that are capable of time and spatially resolved, multiplexed analysis of protein interactions within cells.