Pyrrole-appended derivatives of O-confused oxaporphyrins and their complexes with nickel(II), palladium(II), and silver(III)

Chemistry. 2003 Oct 6;9(19):4650-60. doi: 10.1002/chem.200304899.

Abstract

Condensation of 2,4-bis(phenylhydroxymethyl)furan with pyrrole and p-toluylaldehyde formed, instead of the expected 5,20-diphenyl-10,15-di(p-tolyl)-2-oxa-21-carbaporphyrin, a pyrrole addition product [(H,pyr)OCPH]H(2); this product can formally be considered as an effect of hydrogenation of 3-(2'-pyrrolyl)-5,20-diphenyl-10,15-di(p-tolyl)-2-oxa-21-carbaporphyrin ([(pyr)OCPH]H). The new oxacarbaporphyrinoid presents the (1)H NMR spectroscopy features of an aromatic molecule, including the upfield shift of the inner H21 atom. Insertion of NiCl(2) or PdCl(2) into [(H,pyr)OCPH]H(2) gave two structurally related organometallic complexes, [(pyr)OCP]Ni(II)] and [(pyr)OCP]Pd(II)], in which the metal ions are bound by three pyrrolic nitrogens and the trigonally hybridized C21 atom of the inverted furan. The reaction of [(H,pyr)OCPH]H(2) with silver(I) acetate yields a stable Ag(III) complex [(C(2)H(5)O,pyr)OCP]Ag(III)] substituted at the C3 position by the ethoxy and pyrrole moieties. The macrocyclic frame of [(H,pyr)OCPH]H(2) is conserved. Addition of trifluoroacetic acid to [(C(2)H(5)O,pyr)OCP]Ag(III)] yielded a new aromatic complex [(pyr)OCP]Ag(III)](+). The structures of [(pyr)OCP]Ni(II)] and [(C(2)H(5)O,pyr)OCP]Ag(III)] have been determined by X-ray crystallography. In both molecules the macrocycles are only slightly distorted from planarity and the nickel(II) and silver(III) are located in the NNNC plane. The dihedral angle between the macrocyclic and appended-pyrrole planes of [(pyr)OCP]Ni(II)] reflects the biphenyl-like arrangement with the NH group pointing out toward the adjacent phenyl ring on the C5 position. Tetrahedral geometry around the C3 atom was detected for [(C(2)H(5)O,pyr)OCP]Ag(III)]. The Ni[bond]C and Ag[bond]C bond lengths are similar to other nickel(II) or silver(III) carbaporphyrinoids where the trigonal carbon atom coordinates the metal ion. The trend detected in the (13)C chemical shifts for the appended-pyrrole resonances has been rationalized by the extent of effective conjugation between the macrocycle and the appended pyrrole moiety controlled by the hybridization of the C3 atom and the metal ion oxidation state. The dianionic or trianionic macrocyclic core of the pyrrole-appended derivatives is favored to match the oxidation state of nickel(II), palladium(II), or silver(III), respectively.