In 1979, the Pinelands Commission was established as a regional land-use planning and regulatory agency charged with the implementation of a Comprehensive Management Plan (CMP) for the Pinelands National Reserve (New Jersey, USA). The CMP was created to balance land preservation and development interests in the Reserve. Because water-quality degradation from developed and agricultural landscapes is associated with changes in the composition of biological communities, monitoring landscape changes provides one of the most direct measures of the impact of land-use policies on the Pinelands ecosystem. In this study, we prepared detailed, land-cover maps within randomly selected aerial-photograph plots for a major watershed in the Reserve. We used these land-cover maps to quantify changes in landscape composition and structure (i.e., patch size, patch area, and number of patches) and characterize land-cover transitions in the basin between 1979 and 1991. Because the study period represented the first 12 years of the regional-planning effort in the Reserve, we evaluated the relationship between land-cover transitions and Commission management-area designations which permit different land-use intensities. Although the landscape composition was similar in 1979 and 1991, we found an increase in the total area and number of developed-land, managed-grassland, and barren-land patches. An increase in the number of patches and a decrease in the total area and median and third-quartile patch sizes for forest land and for all patches regardless of cover type indicated that fragmentation of forest land and the landscape as a whole occurred during the study period. The major land-cover transitions that occurred during the period were the loss of forest land to development and associated cover types and the conversion of one agricultural type to another. Overall, land-cover transitions during the period were found to be consistent with the Commission management-area designations, which indicated that the regional-planning effort has been successful in directing human activities to appropriate areas of the basin.