Consumption of Echinacea at the first sign of symptoms has been clinically shown to reduce both the severity and duration of cold and flu. Quantitative polymerase chain reaction optimized for precision and reproducibility was utilized to explore in vitro and in vivo changes in the expression of immunomodulatory genes in response to Echinacea. In vitro exposure of THP-1 cells to 250 microg/ml of Echinacea species extracts induced expression (up to 10-fold) of the interleukin-1alpha, interleukin-1beta, tumor necrosis factor-alpha, intracellular adhesion molecule, interleukin-8, and interleukin-10 genes. This preliminary result is consistent with a general immune response and activation of the nonspecific immune response cytokines. In vivo gene expression within peripheral leukocytes was evaluated in six healthy nonsmoking subjects (18-65 years of age). Blood samples were obtained at baseline and on Days 2, 3, 5, and 12 after consuming a commercial blended Echinacea product, three tablets three times daily (1518 mg/day) for two days plus one additional dose (506 mg) on day three. Serum chemistry and hematological values were not different from baseline, suggesting that liver or bone marrow responses were not involved in acute responses to Echinacea. The overall gene expression pattern at 48 hr to 12 days after taking Echinacea was consistent with an antiinflammatory response. The expression of interleukin-1beta, tumor necrosis factor-alpha, intracellular adhesion molecule, and interleukin-8 was modestly decreased up through Day 5, returning to baseline by day 12. The expression of interferon-alpha steadily rose through Day 12, consistent with an antiviral response. These preliminary data present a gene expression response pattern that is consistent with Echinacea's reported ability to reduce both the duration and intensity of cold and flu symptoms.