We extend the reactive force field ReaxFF to describe the high energy nitramine RDX and use it with molecular dynamics (MD) to study its shock-induced chemistry. We studied shock propagation via nonequilibrium MD simulations at various collision velocities. We find that for high impact velocities (>6 km/s) the RDX molecules decompose and react to form a variety of small molecules in very short time scales (<3 ps). These products are consistent with those found experimentally at longer times. For lower velocities only NO2 is formed, also in agreement with experiments.