To investigate the role of Epstein-Barr virus (EBV) in epithelial tumors, we compared the expression pattern of cellular genes in the EBV-infected gastric carcinoma cell line, NU-GC-3, and its uninfected control. Subtractive suppression hybridization (SSH) was combined with high-density DNA array screening to identify differentially expressed genes. We have discovered that EBV infection upregulated a truncated variant of human basic hair keratin 1 (hHb1-DeltaN), a gene that had previously been identified in metastatic breast carcinoma. We verified the differential expression of hHb1-DeltaN in 3 independent EBV-positive and -negative NU-GC-3 clones by Northern blotting. We further verified the EBV-dependent upregulation of hHb1-DeltaN in 3 other carcinoma cell lines (AGS, TWO3 and DLD1) by RT-PCR. Inhibition of CpG methylation by 5-Aza-CdR induced hHb1-DeltaN mRNA expression in the EBV-negative clones but did not alter the expression in the EBV-positive clones. The expression of hHb1-DeltaN protein was detectable by immunofluorescence and Western blotting in EBV-positive but not in EBV-negative NU-GC-3 clones after proteasome inhibitor (MG132) treatment. hHb1-DeltaN protein formed fibrous structures in the cytoplasm and accumulated in distinct nuclear bodies in the euchromatic areas of the cell nucleus. We suggest that the unstable hHb1-DeltaN protein may inhibit some of the functions of the keratin cytoskeleton and/or interfere with transcription regulation. It also may establish a link between EBV and the low differentiated or anaplastic status of the carcinomas that carry the virus.
Copyright 2003 Wiley-Liss, Inc.