Patient radiation dose in angiography of the renal arteries was assessed and optimized after installing new radiological equipment. In three separate studies (n=50, 25 and 20) patient exposure was monitored in detail. For the first study default factory settings were used, for the second the number of digital subtraction angiography (DSA) images was halved and the X-ray beam filtering during fluoroscopy was increased, and for the third study filtering during DSA was increased as well. Standard projections were derived and used in Monte Carlo simulations to derive dose conversion coefficients to calculate effective dose from the dose-area product (DAP). Dose conversion coefficients were also calculated for CT angiography (CTA). Using default factory settings on the new angiography system, DAP, number of images and effective dose were much higher than on the replaced unit. For the studies given above, DAP was reduced from 144 Gy cm(2) to 65 Gy cm(2) to 32 Gy cm(2), and effective dose from 22 mSv to 11 mSv to 9.1 mSv, respectively. Effective dose due to CTA was 5.2 mSv. It is concluded that modern angiography systems, resulting in high customer satisfaction, may readily cause much higher patient exposure than older systems. These doses may also be much higher than necessary. Optimization before putting such systems into use is absolutely essential. Internationally accepted recommendations for image quality and technique factors in angiography would be of great help.