In order to identify comparative aspects of the interaction of calmodulin with its target proteins, proton magnetic-resonance studies of complex formation between calmodulin and defined segments of phospholamban and caldesmon have been undertaken. Residues 3-15 in the cytoplasmic region of phospholamban, an integral membrane protein of cardiac sarcoplasmic reticulum believed to regulate the calcium pumping ATPase, are shown to contribute to interaction with calmodulin. Using wheat germ calmodulin specifically modified with a spin-label to provide the spectral means for spatial localisation, these residues of phospholamban were correlated with binding in the vicinity of the probe attached to Cys-27 in the N-terminal domain of calmodulin. This interaction, relevant to the mechanism of calmodulin-dependent phosphorylation of phospholamban that relieves its inhibitory influence on the calcium pump, provides a useful model system for comparative study of the properties of calmodulin-binding domains. We contrast here a calmodulin-binding segment in the C-terminal region of caldesmon localised by 1H-NMR study of the interface(s) between the two proteins. These observations are discussed in the context of other calmodulin-binding sequences.