Aflatoxin B1 (AFB1) is a potent carcinogen and mutagen. It requires metabolic activation to be converted to the DNA-binding product aflatoxin B1 epoxide (AFB1-epoxide). A model of this epoxide is aflatoxin B1 dichloride (AFB1Cl2). Both react at the N7 position of guanine to form large adducts. The major adduct formed can either be rapidly removed to leave an apurinic site or can undergo ring opening of the imidazole ring to form a chemically stable adduct. A number of Chinese hamster DNA repair-deficient mutants have been screened for their sensitivity to AFB1-epoxide and AFB1Cl2. Some of the mutants screened belong to different UV complementation groups. Human genes involved in nucleotide excision-repair correct deficiencies found in these complementation groups. The mutants which were found to be most sensitive to AFB1 (V-C4 and V-H1) were further investigated. Alkaline elution was used to measure AFB1-induced DNA single-strand break repair in the mutants. V-H1 repaired completely in 24 h whereas V-C4 displayed only partial repair.