A significant percentage of conventional schwannomas, whether sporadic or associated with neurofibromatosis 2 (NF2), show loss of heterozygosity (LOH) at NF2 and/or NF2 inactivating mutations. Similarly, a significant percentage of neurofibromas show LOH at NF1 and/or NF1 inactivating mutations. There are no molecular genetic data on gastrointestinal (GI) nerve sheath tumors traditionally diagnosed as benign schwannomas, rare neoplasms possibly derived from the schwannian elements dispersed between the smooth muscle fibers. In this study, we analyzed 1 esophageal, 16 gastric, 1 small intestinal, and 2 colonic tumors of such type. Histologically, all were spindle cell neoplasms positive for S-100 protein, vimentin, and glial fibrillary acidic protein, and negative for smooth muscle markers, KIT, CD34, neurofilament proteins, and HMB45. Focal or extensive lymphoid cuffs, often containing germinal centers, were present in most cases. None of the patients had NF2 or NF1. Chromosomes 22 and 17, particularly NF2 and NF1 loci, were analyzed for LOH in all GI tumors and for comparative purposes in 10 conventional schwannomas. LOH on 22q was seen in 40% of conventional schwannomas but in only 5% (1 of 20) of GI schwannomas. PCR amplification followed by direct sequencing of PCR products failed to identify mutations in NF2 coding sequences (exons 1-15) in 13 cases, including a case with LOH on 22q. Losses on 17q involving NF1 were seen in both GI and conventional schwannomas in 50% and 33% of analyzed tumors, respectively. LOH at NF1 might be one of the genetic features seen in peripheral nerve sheath tumors from different locations and should be interpreted with caution. However, lack of NF2 alterations strongly supports the hypothesis that GI schwannomas represent a morphologically and genetically distinct group of peripheral nerve sheath tumors that are different from conventional schwannomas.