The expression of the genes in the human HOX2 locus has been studied during differentiation of two human neuroblastoma (SH-SY5Y and Kelly), a human glioblastoma (251-MG), and the murine F9 embryonal carcinoma cell lines. Cells were differentiated with retinoic acid (RA), or with RA together with dibutyral cyclic AMP (db-cAMP) and nerve growth factor (NGF) in order to assess the changes in the expression patterns of these homeobox genes during neuronal differentiation. We show that the genes of the HOX2 locus are expressed in a complex transcription pattern that varies with cell type. The two uninduced neuroblastoma cell lines show a similar pattern of expression for a number of HOX2 genes although the levels of expression are different for individual cell lines. The embryonal carcinoma cell line F9 expresses low levels of several HOX2 genes which is restricted to the 5' region of the HOX2 cluster. The glioblastoma cell line, 251-MG expresses almost all of the genes of the HOX2 locus. Differentiation of these cells modulates the expression of the HOX2 genes in a manner that is dependent upon the cell type as well as the differentiation factor. Differentiation affects both the level of HOX2 gene expression and the distribution of transcript sizes. In conclusion, our analysis reveals a complex pattern of expression for the genes of the HOX2 locus in neuronal and glial cells and suggests that the cell-specific expression of these genes may be correlated with the phenotypic differences that are observed between different neuronal and glial cell populations within the nervous system.