Implantation in rabbits involves the cellular fusion of trophoblastic and uterine epithelial cells resulting in embryo penetration of the uterine endometrium. Since lysophospholipids, known to have fusigenic properties, could be responsible for this cell fusion, the metabolism of lysophospholipids was studied throughout gestation in blastocyst/yolk sac and extracoelic amnioallantoic fluids. Analysis of phospholipid composition revealed that lysophospholipids are present in blastocyst/yolk sac fluid. Their concentrations and haemolytic activity change during pregnancy. They increase and reach their highest values during days 7 to 9, the implantation days in rabbits. A clear correlation was observed between lysophosphatidylcholine concentrations in blastocyst/yolk sac fluid and haemolysis induced by this fluid. Phosphatidylcholine concentrations, phospholipase A2 activity, which generates lysophospholipids, and lysophospholipase A activity which hydrolyses lysophosphatidylcholine into fatty acid, were at their highest value at day 12. These data suggest that a transient accumulation of lysophospholipids could ensure local cell fusion. Moreover, we propose that the lysophospholipid concentrations in blastocyst/yolk sac fluid are dependent upon activities of phospholipase A2 and lysophospholipase.