The magnitude of neuronal damage in central nervous system (CNS) injury may be related, in part, to alterations in the balance between excitatory and inhibitory neurotransmitters. Previous studies have implicated a role of central inhibitory noradrenergic mechanisms in the pathophysiologic sequelae of traumatic brain injury. In the present study, we examined alpha 1-adrenergic receptor binding after parasaggital lateral fluid percussion (FP) brain injury of moderate severity (2.3 atm) in the rat. At 30 min following injury, the specific binding of [3H]prazosin to membranes isolated from left cortex (injury site) was reduced by 37% in brain-injured animals when compared to sham-operated noninjured animals (p < 0.05). However, there were no significant differences in [3H]prazosin binding to membranes of either contralateral (right) cortex or left and right hippocampi between brain-injured and sham-operated animals. Conversely, at 24 h posttrauma, specific binding to membranes of left cortex, cortex adjacent to injury site, contralateral (right) cortex, and left hippocampus was reduced by 25%, 16%, 27%, and 24%, respectively (all p < 0.05). Scatchard analysis revealed that a reduction of [3H]prazosin binding to membranes of injured animals resulted from a decrease in alpha 1-receptor binding density (B-max) but not from changes in ligand affinity. Histopathologic assessment of neuronal damage at 24 h postinjury revealed neuronal loss within injury site cortex and left hippocampus but no clearly discernible cell loss in contralateral right cortex, suggesting that the decrease in B-max might be a consequence of early pathophysiology of trauma rather than of neuronal cell loss. We suggest that alterations in alpha 1-adrenergic receptors after brain injury may result in decreased inhibitory neurotransmitter action of norepinephrine and may thus contribute to the pathophysiology of traumatic brain injury.