In this study we have evaluated the second messenger system that might couple 5-HT1A receptor activation to produce peripheral hyperalgesia. The intradermal injection of the serotonin (5-hydroxytryptamine; 5-HT) receptor agonist for the 1A receptor subset (5-HT1A), (+/-)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthaline hydrobromide (8-OH DPAT) produces a dose-dependent hyperalgesia which was attenuated by a cAMP kinase inhibitor (the R-isomer of cyclic adenosine-3'-5'-monophosphate), but prolonged by the inhibition of endogenous phosphodiesterase by rolipram, supporting a role for the cAMP second messenger system. The 5-HT1A receptor agonist, 8-OH-DPAT, and the adenyl cyclase activator, forskolin administered together, produced an additive hyperalgesia, suggesting that the 5-HT1A receptor in peripheral terminals of the primary afferent neurons is positively coupled to the cAMP second messenger system in producing hyperalgesia. The inability of pertussis toxin to inhibit 8-OH DPAT-induced hyperalgesia further supports this hypothesis. The coupling of the 5-HT1A receptor to the cAMP second messenger system appears to be through guanine regulatory proteins since guanosine 5'-O-(3-thiotriphosphate) and cholera toxin both markedly enhanced 8-OH DPAT hyperalgesia. In further support of the role of guanine nucleotide regulatory proteins, guanosine 5'-O-(2-thiodiphosphate), as well as activators of inhibitory guanine regulatory proteins (the mu-opioid agonist, [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin, and the adenosine A1 agonist, N6-cyclopentyladenosine, significantly attenuated 8-OH DPAT hyperalgesia.