Mutant p53 can substitute for human papillomavirus type 16 E6 in immortalization of human keratinocytes but does not have E6-associated trans-activation or transforming activity

J Virol. 1992 Jul;66(7):4201-8. doi: 10.1128/JVI.66.7.4201-4208.1992.

Abstract

Human papillomavirus type 16 (HPV16) E6 and E7 are selectively retained and expressed in HPV16-associated human genital tumors. E6 is active in several cell culture assays, including transformation of NIH 3T3 cells, trans activation of the adenovirus E2 promoter, and cooperation with E7 to immortalize normal human keratinocytes. Biochemically, the HPV16 E6 protein has been shown to bind to tumor suppressor protein p53 in vitro and induce its degradation in a rabbit reticulocyte lysate. To examine the relationship between the various biological activities of E6 and inactivation of p53, we tested the abilities of dominant negative mutants of p53 to substitute functionally for E6 in the three cell culture assays. While wild-type p53 inhibited keratinocyte proliferation, both mouse and human mutant p53s, in conjunction with E7, increased proliferation of the keratinocytes, resulting in generation of immortalized lines. However, in contrast to E6, mutant p53 was unable to induce transformation or trans activate the adenovirus E2 promoter in NIH 3T3 cells. These results suggest that inactivation of wild-type p53 is necessary for HPV-induced immortalization of human keratinocytes and that different or additional activities are required for E6-dependent transformation and trans activation of NIH 3T3 cells.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3T3 Cells
  • Animals
  • Cell Division
  • Cell Transformation, Viral / genetics
  • Cell Transformation, Viral / physiology*
  • Humans
  • Keratinocytes / cytology
  • Keratinocytes / microbiology*
  • Mice
  • Mutation
  • Oncogene Proteins, Viral / genetics
  • Oncogene Proteins, Viral / metabolism*
  • Papillomaviridae / genetics
  • Papillomaviridae / physiology*
  • Precipitin Tests
  • Repressor Proteins*
  • Transcriptional Activation*
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism*

Substances

  • E6 protein, Human papillomavirus type 16
  • Oncogene Proteins, Viral
  • Repressor Proteins
  • Tumor Suppressor Protein p53