Batch and continuous culture techniques were used to evaluate the effect of the ionophore lysocellin on ruminal fermentation and microbial populations. In batch culture, .5 and 1 ppm (of the fluid) lysocellin markedly decreased (P less than .01) the acetate:propionate ratio without affecting fiber digestion, ammonia concentration, or culture pH. Greater concentrations of lysocellin had negative effects (P less than .05) on fiber digestion and increased (P less than .05) culture pH. In continuous culture, a low level of lysocellin (33 ppm of the diet DM or about .7 ppm of the fluid) decreased pH (P less than .05) and methane (P less than .05) production but had no effect on fiber digestion. Lysocellin tended to increase (P less than .05) OM digestion in corn-based diets but decreased OM digestion in barley-based diets (starch source x lysocellin interaction, P less than .05). In addition, the molar proportion of propionate was increased more in barley- than in corn-based diets. Total anaerobes and amylolytic and lactate-utilizing microorganisms were not affected by the ionophore. In continuous culture, cellulolytic and lactate-producing organisms were insensitive to lysocellin, but, in lysocellin-treated media, cellulolytic organisms were resistant, whereas lactic acid producers were sensitive to lysocellin at 4 ppm. In summary, the ionophore lysocellin alters ruminal fermentation by decreasing ruminal methane production and increasing the molar proportion of propionate; however, effects varied depending on whether corn or barley served as the primary starch source.