Sequence-known short-stranded hepatitis B virus (HBV) DNA fragment (181 bps) was obtained by PCR method. The strategy for its electrochemical detection was designed by covalently immobilizing single-stranded HBV DNA on gold electrode surface via carboxylate ester as a linkage between 3'-hydroxy end of DNA and carboxyl group of thioglycolic acid (TGA) self-assembled monolayer. The hybridization reaction on surface was evidenced by electrochemical methods using ferrocenium hexafluorophosphate (FcPF6) as an electroactive indicator. The interactions of Fc+ with single-stranded (ss) and double-stranded (ds) HBV DNA immobilized on TGA monolayer were studied. The difference between the responses of Fc+ at ss- and ds-DNA/Au electrodes suggested that this hybridization biosensor could be conveniently used to monitor DNA hybridization with a high sensitivity. AC impedance and XPS techniques have been employed to characterize the immobilization of ss-DNA on the gold surface.