Current symptomatic treatments for Parkinson's disease are based largely on dopamine replacement therapies; however, the fact that these treatments are characterized by many long-term side effects has led to widespread interest in nondopaminergic therapies. To date, a nondopaminergic therapy with comparable efficacy to dopamine replacement has not been devised. Here the authors discuss recent findings that systemic administration of a selective delta-opioid receptor agonist has powerful antiparkinsonian effects in rodent and primate models of Parkinson's disease that are equivalent to those of dopamine replacement. delta-Opioid receptor agonists may prove to be useful for the symptomatic treatment of Parkinson's disease in humans.