Objective: To investigate the synergistic antitumor effects of combined use of p14ARF gene and 5-fluorouracil (5-Fu) in pancreatic cancer.
Methods: A human pancreatic cancer cell line PC-3 was transfected with lipofectin-mediated recombinant p14ARF gene, and was then administered with 5-Fu. Cell growth, morphological changes, cell cycle, apoptosis, and molecular changes were measured using the MTT assay, flow cytometry, RT-PCR, Western blotting, and immunocytochemical assays.
Results: After transfection of p14ARF, cell growth was obviously inhibited, resulting in an accumulation of cells in the G(1) phase. The proportion of cells in the G(1) phase was significantly increased from 58.51% to 75.92%, and in the S and G(2)/M phases decreased significantly from 20.05% to 12.60%, and from 21.44% to 11.48%, respectively, as compared with those of the control groups. PC-3/p14ARF cells that underwent 5-Fu treatment had significantly greater G(2)/M phase accumulation, from 11.48% to 53.47%. The apoptopic index was increased in PC-3/p14ARF cells from 3.64% to 19.62%. The MTT assay showed p14ARF-expressing cells were significantly more sensitive to 5-Fu (0.01 - 10 mg/L) than those devoid of p14ARF expression (P < 0.01). Western blotting showed p14ARF upregulates p53 expression.
Conclusion: Combined use of p14ARF gene and 5-Fu acts synergistically to inhibit pancreatic cancer cell proliferation, suggesting a new anticancer strategy.