Neuroactive steroids demonstrate pharmacological actions that have relevance for a host of neurological and psychiatric disorders. They offer protection against seizures in a range of models and seem to inhibit certain stages of drug dependence in preclinical assessments. The present study was designed to evaluate two endogenous and one synthetic neuroactive steroid that positively modulate the gamma-aminobutyric acid (GABA(A)) receptor against the increase in sensitivity to the convulsant effects of cocaine engendered by repeated cocaine administration (seizure kindling). Allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one), pregnanolone (3alpha-hydroxy-5beta-pregnan-20-one) and ganaxolone (a synthetic derivative of allopregnanolone 3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one) were tested for their ability to suppress the expression (anticonvulsant effect) and development (antiepileptogenic effect) of cocaine-kindled seizures in male, Swiss-Webster mice. Kindled seizures were induced by daily administration of 60 mg/kg cocaine for 5 days. All of these positive GABA(A) modulators suppressed the expression of kindled seizures, whereas only allopregnanolone and ganaxolone inhibited the development of kindling. Allopregnanolone and pregnanolone, but not ganaxolone, also reduced cumulative lethality associated with kindling. These findings demonstrate that some neuroactive steroids attenuate convulsant and sensitizing properties of cocaine and add to a growing literature on their potential use in the modulation of effects of drugs of abuse.