Selective measurement of ultratrace methylmercury in fish by flow injection on-line microcolumn displacement sorption preconcentration and separation coupled with electrothermal atomic absorption spectrometry

Anal Chem. 2003 May 15;75(10):2251-5. doi: 10.1021/ac026415f.

Abstract

A novel nonchromatographic speciation technique for ultratrace methylmercury in biological materials was developed by flow injection microcolumn displacement sorption preconcentration and separation coupled on-line with electrothermal atomic absorption spectrometry (ETAAS). In the developed technique, Cu(II) was first on-line complexed with diethyldithiocarbamate (DDTC), and the resultant Cu-DDTC was presorbed onto a microcolumn packed with the sorbent from a cigarette filter. Selective preconcentration of methylmercury (MeHg) in the presence of Hg(II), ethylmercury (EtHg), and phenylmercury (PhHg) was achieved at pH 6.8 through loading the sample solution onto the microcolumn due to a displacement reaction between MeHg and the presorbed Cu-DDTC. The retained MeHg was subsequently eluted with 50 microL of ethanol and on-line determined by ETAAS. Interferences from coexisting heavy metal ions with lower stability of their DDTC complexes relative to Cu-DDTC were minimized without the need of any masking reagents. No interferences from 5.5 mg L(-1) Cu(II), 4.5 mg L(-1) Cd(II), 2.5 mg L(-1) Cr(III), 3 mg L(-1) Fe(III), 10 mg L(-1) Ni(II), 10 mg L(-1) Pb(II), and at least 25 mg L(-1) Zn(II) were observed for the determination of MeHg at the 50 ng L(-1) level (as Hg). With the consumption of only 3.4 mL of sample solution, an enhancement factor of 75, a detection limit of 6.8 ng L(-1) (as Hg) in the digest (corresponding to 3.4 ng g(-1) in original solid sample for a final 50 mL of digest of 0.1 g of solid material), and a precision (RSD, n = 13) of 2.3% for the determination of methylmercury at the 50 ng L(-1) (as Hg) level were achieved at a sample throughput of 30 samples h(-1). The recoveries of methylmercury spike in real fish samples ranged from 97 to 108%. The developed technique was validated by determination of methylmercury in a certified reference material (DORM-2, dogfish muscle), and was shown to be useful for the determination of methylmercury in real fish samples.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Animals
  • Fishes / metabolism*
  • Flow Injection Analysis / methods*
  • Methylmercury Compounds / analysis*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Spectrophotometry, Atomic / methods*

Substances

  • Methylmercury Compounds