An open-ended hollow tubular structure is designed based on hydrogen-bond-directed self-assembly of a chimeric cyclic peptide subunit comprised of alternating alpha- and epsilon-amino acids. The design features a novel 1,4-disubstituted-1,2,3-triazole epsilon-amino acid and its utility as a peptide backbone substitute. The N-Fmoc-protected epsilon-amino acid was synthesized in high yield and optical purity in three steps from readily available starting materials and was employed in solid-phase peptide synthesis to afford the desired cyclic peptide structure. The cyclic peptide self-assembly has been studied in solution by (1)H NMR and mass spectrometry and the resulting tubular ensemble characterized in the solid state by X-ray crystallography.