The present study was undertaken to explore the role of interleukin-12 (IL-12) p40 in the expression of TNF-alpha in microglia. Interestingly, we have found that IL-12 p70, p402 (the p40 homodimer) and p40 (the p40 monomer) dose-dependently induced the production of TNF-alpha and the expression of TNF-alpha mRNA in BV-2 microglial cells. In addition to BV-2 microglial cells, p70, p402 and p40 also induced the production of TNF-alpha in mouse primary microglia and peritoneal macrophages. As the activation of both NF-kappaB and CCAAT/enhancer binding protein beta (C/EBPbeta) is important for the expression of TNF-alpha in microglial cells, we investigated the effect of p40 on the activation of NF-kappaB as well as C/EBPbeta. Activation of NF-kappaB as well as C/EBPbeta by p40 and inhibition of p40-induced expression of TNF-alpha by Deltap65, a dominant-negative mutant of p65, and DeltaC/EBPbeta, a dominant-negative mutant of C/EBPbeta, suggests that p40 induces the expression of TNF-alpha through the activation of NF-kappaB and C/EBPbeta. In addition, we show that p40 induced the activation of both extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Interestingly, PD98059, an inhibitor of ERK, inhibited p40-induced expression of TNF-alpha through the inhibition of C/EBPbeta, but not that of NF-kappaB, whereas SB203580, an inhibitor of p38 MAPK, inhibited p40-induced expression of TNF-alpha through the inhibition of both NF-kappaB and C/EBPbeta. This study delineates a novel biological function of p40 in inducing TNF-alpha in microglia and macrophages.