Pharmacological modulation of perceptual learning and associated cortical reorganization

Science. 2003 Jul 4;301(5629):91-4. doi: 10.1126/science.1085423.

Abstract

The pharmacological basis of perceptual learning and associated cortical reorganizations remains elusive. We induced perceptual learning by Hebbian coactivation of the skin of the tip of the right index finger in humans. Under placebo, tactile two-point discrimination was improved on the coactivated but not on the left index finger. This augmentation was blocked by an N-methyl-D-aspartate-receptor blocker, but doubled by amphetamine. No drug effects were found on the left index finger. The individual amount of cortical reorganization as assessed by mapping of somatosensory evoked potentials was linearly correlated with the pharmacological modulation of discrimination thresholds, implying that perceptual learning and associated cortical changes are controlled by basic mechanisms known to mediate and modulate synaptic plasticity.

Publication types

  • Clinical Trial
  • Controlled Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Amphetamine / pharmacology*
  • Brain Mapping
  • Discrimination Learning / drug effects*
  • Electric Stimulation
  • Evoked Potentials, Somatosensory / drug effects*
  • Excitatory Amino Acid Antagonists / pharmacology
  • Female
  • Humans
  • Long-Term Potentiation / drug effects
  • Male
  • Memantine / pharmacology*
  • Middle Aged
  • Neuronal Plasticity / drug effects
  • Perception / drug effects*
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate / physiology
  • Somatosensory Cortex / drug effects
  • Somatosensory Cortex / physiology*
  • Touch / drug effects

Substances

  • Excitatory Amino Acid Antagonists
  • Receptors, N-Methyl-D-Aspartate
  • Amphetamine
  • Memantine