Background: Chronic ethanol consumption is associated with hepatic lipid peroxidation and the deposition or retention of aldehyde-adducted proteins postulated to be involved in alcohol-induced liver injury. The purpose of this study was to characterize hepatocellular formation of aldehyde-protein adducts during early stages of alcohol-induced liver injury.
Methods: Female Sprague Dawley(R) rats were subjected to the intragastric administration of a low-carbohydrate/high-fat total enteral nutrition diet or a total enteral nutrition diet containing ethanol for a period of 36 days. Indexes of hepatic responses to ethanol were evaluated in terms of changes in plasma alanine aminotransferase activity, hepatic histopathologic analysis, and induction of cytochrome P-4502E1 (CYP2E1). Immunohistochemical methods were used to detect hepatic proteins modified with malondialdehyde (MDA) or 4-hydroxynonenal (4-HNE) for subsequent quantitative image analysis.
Results: After 36 days of treatment, rats receiving the alcohol-containing diet displayed hepatic histopathologies characterized by marked micro- and macrosteatosis associated with only minor inflammation and necrosis. Alcohol administration resulted in a 3-fold elevation of plasma alanine aminotransferase activity and 3-fold increases (p < 0.01) in hepatic CYP2E1 apoprotein and activity. Quantitative immunohistochemical analysis revealed significant (p < 0.01) 5-fold increases in MDA- and 4-HNE modified proteins in liver sections prepared from rats treated with alcohol. The MDA- or 4-HNE modified proteins were contained in hepatocytes displaying intact morphology and were colocalized primarily with microvesicular deposits of lipid. Aldehyde-modified proteins were not prevalent in parenchymal or nonparenchymal cells associated with foci of necrosis or inflammation.
Conclusions: These results suggest that alcohol-induced lipid peroxidation is an early event during alcohol-mediated liver injury and may be a sensitizing event resulting in the production of bioactive aldehydes that have the potential to initiate or propagate ensuing proinflammatory or profibrogenic cellular events.