Heterogeneity corrections for radiotherapy dose calculations are based on the electron density of the disturbing heterogeneity. However, when CT planning a radiotherapy treatment, where metallic hip implants are present, considerable artefacts are seen in the images. Often, an additional problem arises whereby no information regarding the artificial hip's composition and geometry is available. This study investigates whether the extended CT range can be used to determine the composition (hence electron density) of artificial hips in radiotherapy patients. Two CT-calibration methods were evaluated, one based on material substitution, the other a stoichiometric calibration. We also evaluate whether the physical dimensions of metal prostheses can be accurately imaged for subsequent use in treatment planning computers. Neither calibration method successfully predicted electron densities. However, the limited range of implant-materials used in patients means that the extended CT range can still successfully distinguish between implant densities. The physical dimensions can be determined to +/-2 mm by establishing the required windowing of displays for each material. The cross-sectional area of the prosthesis and the presence of other high-density objects in a CT slice can influence the generated CT number and careful design of calibration phantoms is essential.