Effect of resistant starch on genotoxin-induced apoptosis, colonic epithelium, and lumenal contents in rats

Carcinogenesis. 2003 Aug;24(8):1347-52. doi: 10.1093/carcin/bgg098. Epub 2003 Jun 5.

Abstract

The effect of different doses of a type-2 resistant starch (RS) in the form of high amylose cornstarch (HAS) on the intralumenal environment and the acute-apoptotic response to a genotoxic carcinogen (AARGC) in the colon was assessed to determine if changes in lumenal conditions were associated with an enhanced apoptotic response to DNA damage. The control diet was a modified form of the AIN-76 diet containing fully digestible starch but no dietary fibre. HAS was added to the control diet at the expense of digestible starch to give 10% HAS, 20% HAS and 30% HAS. Rats were fed the different experimental diets for a period of 4 weeks, after which a single injection of azoxymethane was given to induce DNA damage in the colonic epithelium; 6 h later AARGC was measured. Other measures included fecal and cecal short chain fatty acids (SCFA) and pH, and cell proliferation in the colonic epithelium. In HAS-supplemented rats, fermentation events were significantly increased in both cecum and feces. There was a progressive decrease in pH in both the cecum and feces as the amount of HAS in the diet increased. SCFA concentrations, including butyrate, were significantly elevated by HAS with higher levels being observed in the cecum than in the feces. There was a significant increase in colonic AARGC with HAS doses of 20 and 30% (P < 0.01) but not with 10% HAS. Cell proliferation was not affected by any dose of HAS. Correlations with AARGC, independent of dietary group, were seen for fecal SCFAs and pH, suggesting that fermentation events, might explain the effect of RS on AARGC. Altering amounts of dietary RS changes fermentative activity in the colon. Increased RS is associated with enhanced AARGC. Changes in amount of fermentable substrate are capable of changing the biological response to DNA damage.

MeSH terms

  • Amylose / administration & dosage*
  • Animals
  • Apoptosis / drug effects*
  • Azoxymethane / toxicity*
  • Carcinogens / toxicity*
  • Cecum / chemistry
  • Cell Division
  • Cellulose / administration & dosage*
  • Colon / drug effects*
  • DNA / drug effects*
  • DNA Damage
  • Dietary Carbohydrates / administration & dosage
  • Dietary Fiber / administration & dosage
  • Fatty Acids, Volatile / metabolism
  • Feces / chemistry
  • Hydrogen-Ion Concentration
  • Intestinal Mucosa / drug effects
  • Intestine, Small / drug effects
  • Intestine, Small / metabolism
  • Intestine, Small / pathology
  • Male
  • Organ Size
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Carcinogens
  • Dietary Carbohydrates
  • Dietary Fiber
  • Fatty Acids, Volatile
  • Cellulose
  • Amylose
  • DNA
  • Azoxymethane