In the present studies we developed lentivirus vectors with regulated, consistent transgene expression in B lymphocytes by incorporating the immunoglobulin heavy chain enhancer (E micro ) with and without associated matrix attachment regions (E micro MAR) into lentivirus vectors. Incorporation of these fragments upstream of phosphoglycerate kinase (PGK) or cytomegalovirus promoters resulted in a two- to threefold increase in enhanced green fluorescent protein (EGFP) mean fluorescence intensity (MFI) in B-lymphoid but not T-lymphoid, myeloid, fibroblast, or carcinoma cell lines. A 1-log increase in EGFP expression was observed in B-lymphoid cells (but not myeloid cells) differentiated from human CD34(+) progenitors in vitro transduced with E micro - and E micro MAR-containing lentivectors. Lastly, we evaluated the expression from the E micro MAR element in mice 2 to 24 weeks posttransplant with transduced hematopoietic stem cells. In mice receiving vectors with the E micro and E micro MAR elements upstream of the PGK promoter, there was a 2- to 10-fold increase in EGFP expression in B cells (but not other cell types). Evaluation of the coefficient of variation of expression among different cell types demonstrated that consistent, position-independent transgene expression was observed exclusively in B cells transduced with the E micro MAR-containing vector and not other cells types or vectors. Proviral genomes with the E micro MAR element had increased chromatin accessibility, which likely contributed to the position independence of expression in B lymphocytes. In summary, incorporation of the E micro MAR element in lentivirus vectors resulted in enhanced, position-independent expression in primary B lymphocytes. These vectors provide a useful tool for the study of B-lymphocyte biology and the development of gene therapy for disorders affecting B lymphocytes, such as immune deficiencies.