Effects of head-down tilt on the intracranial pressure in conscious rabbits

Brain Res. 2003 Jul 4;977(1):55-61. doi: 10.1016/s0006-8993(03)02723-9.

Abstract

Head-down tilt (HDT) causes a fluid shift towards the upper body, which increases intracranial pressure (ICP). In the present study, the time course of ICP changes during prolonged exposure to HDT was investigated in conscious rabbits through a catheter chronically implanted into the subarachnoid space. The production of cerebrospinal fluid (CSF) after exposure to 7-days HDT was also examined by a ventriculo-cisternal perfusion method. The ICP increased from 4.3+/-0.4 (mean+/-S.E.M.) mmHg to 8.0+/-0.8 mmHg immediately after the onset of 45 degrees HDT, reached a peak value of 15.8+/-1.9 mmHg at 11 h, and then decreased to 10.4+/-1.1 mmHg at 24 h. During 7-days HDT, it also increased from 4.8+/-0.9 mmHg to 9.2+/-1.6 mmHg immediately after the onset of 45 degrees HDT, reached a peak value of 12.8+/-2.5 mmHg at 12 h of HDT, and then decreased gradually towards the pre-HDT baseline value for 7 days. The rate of CSF production was 10.1+/-0.6 microl/min in rabbits exposed to 7-days HDT, and 9.7+/-0.5 microl/min in control rabbits. These results suggest that the rabbits begin to adapt to HDT within a few days and that the production of CSF is preserved after exposure to 7-days HDT. The time course of ICP changes during HDT in conscious rabbits seems to be considerably different from that in anesthetized rabbits.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Consciousness / physiology*
  • Female
  • Fluid Shifts / physiology
  • Head-Down Tilt / physiology*
  • Intracranial Pressure / physiology*
  • Male
  • Rabbits
  • Time Factors