The 11 September 2001 terrorist attack on New York City's World Trade Center (WTC) caused an unprecedented environmental emergency. The collapse of the towers sent a tremendous cloud of crushed building materials and other pollutants into the air of lower Manhattan. In response to the calamity, federal, state, and city environmental authorities and research institutes devoted enormous resources to evaluate the impact of WTC-derived air pollution on public health. Unfortunately, on the day of the disaster, no air-sampling monitors were operating close to the WTC site to characterize and quantify pollutants in the dust cloud. However, analysis of fallen dust samples collected 5 and 6 days after the attack showed that 1-4% by weight consisted of particles small enough to be respirable (Lioy et al. 2002). These particles included fine particulate matter, or PM(subscript)2.5(/subscript) [PM < 2.5 micro m mass median aerodynamic diameter (MMAD)], which can be inhaled deep into the lung and is associated with cardiovascular and respiratory health effects. Because of the extremely high concentrations of dust immediately after the collapse of the towers, even a relatively small proportion of PM(subscript)2.5(/subscript) in the dust clouds could have contributed to breathing problems in rescue workers and others who were not wearing protective masks.