Removal of arterial wall calcifications in CT angiography by local subtraction

Med Phys. 2003 May;30(5):761-70. doi: 10.1118/1.1567271.

Abstract

CT Angiography (CTA) is an established technique for the minimally invasive imaging of arteries. The technique of maximum intensity projection (MIP) is often used to get a comprehensive overview of the vascular anatomy. On a MIP, however, arterial wall calcifications may hinder the visualization of the arterial lumen. These calcifications are in direct contact with the contrast-enhanced blood, which makes removal difficult. We present a local subtraction method for the automatic removal of these calcifications. In our approach a second CT scan has to be made, prior to contrast injection. The calcifications in both scans are registered prior to subtraction to compensate for displacements in between the two scans. Local subtraction results are compared with results obtained by thresholding. The method was tested in a phantom and with data from four patients. The phantom represented an artery with different types of stenosis. Data were used from patients for which CTA of the renal arteries was performed. For two patients the electrocardiogram (ECG) was recorded during the CTA examination, making retrospective cardiac gated reconstructions possible. Both the phantom and the patient study showed that the local subtraction method is capable of removing calcifications and visualizing the residual lumen. In the patient study it appeared that some artifacts remained for higher pitch values. We conclude that the local subtraction method is less subjective and more accurate than thresholding. Best results are obtained by use of a small pitch, at the expense of the volume covered during a single breath hold.

MeSH terms

  • Algorithms
  • Angiography / methods*
  • Artificial Intelligence*
  • Calcinosis / diagnostic imaging
  • Humans
  • Pattern Recognition, Automated / methods*
  • Peripheral Vascular Diseases / diagnostic imaging*
  • Radiographic Image Enhancement / methods
  • Radiographic Image Interpretation, Computer-Assisted / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Subtraction Technique*
  • Tomography, X-Ray Computed / methods*