3-O-methyl-6-[18F]fluoro-L-DOPA and its evaluation in brain tumour imaging

Eur J Nucl Med Mol Imaging. 2003 Jul;30(7):1004-8. doi: 10.1007/s00259-003-1205-2. Epub 2003 May 24.

Abstract

3-O-Methyl-6-[(18)F]fluoro-L-DOPA (OMFD) is a major metabolite of 6-[(18)F]fluoro-L-DOPA. Although synthesis of OFMD was primarily established to study the dopaminergic system, as it is an amino acid analogue, uptake in experimental tumours has been found. The aim of this study was to evaluate the applicability of OMFD for brain tumour imaging and to obtain initial estimates of whole-body biodistribution and radiation dosimetry in humans. Nineteen patients with suspected or confirmed brain tumours were investigated with OMFD and dynamic brain PET, complemented by whole-body PET in seven patients. Tracer kinetics were compared for normal brain and intracerebral lesions. Tissue accumulation was quantified with standardised uptake values (SUVs). Whole-body distribution in combination with tracer kinetics from animal experiments was used for the calculation of radiation dosimetry data. On the basis of OMFD PET, viable brain tumour was suspected in 16 patients with SUVs of 3.0+/-0.8 and a tumour to non-tumour ratio of 1.9+/-0.5. Highest tumour and normal brain uptake occurred between 15 and 30 min, with a subsequent slow decrease. Late whole-body tracer distribution was uniform without specific organ accumulation. Elimination occurred via urine. The mean radiation dose to the whole body was estimated at 0.016 mSv/MBq, with the kidneys as dose-critical organ (0.033 mGy/MBq). In conclusion, OMFD enables the visualisation of brain tumours with SUVs similar to other fluorinated amino acids. The whole-body radiation exposure from OMFD is comparable to that from FDG imaging.

Publication types

  • Clinical Trial

MeSH terms

  • Adult
  • Aged
  • Body Burden
  • Brain Neoplasms / diagnostic imaging*
  • Brain Neoplasms / metabolism*
  • Dihydroxyphenylalanine / analogs & derivatives*
  • Dihydroxyphenylalanine / pharmacokinetics*
  • Female
  • Humans
  • Male
  • Metabolic Clearance Rate
  • Middle Aged
  • Organ Specificity
  • Radiation Dosage
  • Radiometry / methods*
  • Radiopharmaceuticals / pharmacokinetics
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Tissue Distribution
  • Tomography, Emission-Computed / methods

Substances

  • Radiopharmaceuticals
  • 3-O-methyl-6-fluoro-dopa
  • Dihydroxyphenylalanine