In order to determine the importance of the two ester pharmacophores in high affinity, conformationally constrained DAG-lactones (Lac-1-5) as PK-C ligands, we have independently replaced the sn-1 and sn-2 carbonyl esters in these compounds by ketone (2, 10, 11), amide (3, 25-28), and hydroxyl (12, 13) isosteres. Although the ketone analogue of the sn-1 ester (2) exhibited comparable activity to the parent Lac-1 when taking into account the difference in lipophilicities, the other isosteres were significantly poorer PK-C alpha ligands compared to the parent DAG-lactones. This study demonstrates that the ester functionality in DAG-lactone plays an important role in the ligand's capacity to form a strong hydrogen bond with Gly253 at the active site. The discrete K(i) analysis from the sn-1 and sn-2 isosteres further confirms that the DAG-lactones bind preferentially to the C1-domain in the sn-2 binding mode, as previously suggested.