5'-[N-[(3S)-3-Amino-carboxypropyl]-N-methylamino]-5(')-deoxyadenosine (azaSAM), an analog of S-adenosyl-L-methionine (SAM), was used to study the cofactor-dependent reduction of the [4Fe-4S](2+) center in lysine 2,3-aminomutase to the +1 oxidation state. azaSAM has a tertiary nitrogen in place of the sulfonium center of SAM. The analog binds to lysine 2,3-aminomutase with K(d)s of 1.4+/-0.3 microM at pH 8.0 and 2.2+/-0.6 microM at pH 6.5. Reduction of the [4Fe-4S](2+) center in the presence of this analog gives a 10K [4Fe-4S](1+) electron paramagnetic resonance (EPR) signal similar to that seen with SAM or S-adenosyl-L-homocysteine (SAH). The pH dependence of cofactor-induced reduction was examined to determine whether ionization of the tertiary nitrogen (pK(a)=7.08) might affect reduction of the [4Fe-4S](2+) center. The results show similar behavior in azaSAM and SAH, demonstrating that ionization of the aza group in azaSAM does not account for pH dependence in cofactor-dependent reduction of the [4Fe-4S](2+) center. The signal shape of the low-temperature EPR signal for the [4Fe-4S](1+) center in the SAM-induced reduction displayed a pH dependence that was not observed in the azaSAM- or SAH-induced spectra. Unique features of the signal are at a maximum at the pH activity optimum of pH 8 and are diminished as the pH is lowered or raised. These features are also absent in the spectra at all pHs examined when reduction is induced by azaSAM or SAH.