Voxel-based morphometry (VBM) has already been applied to MRI scans of patients with Alzheimer's disease (AD). The results of these studies demonstrated atrophy of the hippocampus, temporal pole, and insula, but did not describe any global brain changes or atrophy of deep cerebral structures. We propose an optimized VBM method, which accounts for these shortcomings. Additional processing steps are incorporated in the method, to ensure that the whole spectrum of brain atrophy is visualized. A local group template was created to avoid registration bias, morphological opening was performed to eliminate cerebrospinal fluid voxel misclassifications, and volume preserving modulation was used to correct for local volume changes. Group differences were assessed and thresholded at P < 0.05 (corrected). Our results confirm earlier findings, but additionally we demonstrate global cortical atrophy with sparing of the sensorimotor cortex, occipital poles, and cerebellum. Moreover, we show atrophy of the caudate head nuclei and medial thalami. Our findings are in full agreement with the established neuropathological descriptions, offering a comprehensive view of atrophy patterns in AD.