Subcellular localization and tumor-suppressive functions of 15-lipoxygenase 2 (15-LOX2) and its splice variants

J Biol Chem. 2003 Jul 4;278(27):25091-100. doi: 10.1074/jbc.M301920200. Epub 2003 Apr 18.

Abstract

15-Lipoxygenase 2 (15-LOX2), the most abundant arachidonate (AA)-metabolizing enzyme expressed in adult human prostate, is a negative cell-cycle regulator in normal human prostate epithelial cells. Here we study the subcellular distribution of 15-LOX2 and report its tumor-suppressive functions. Immunocytochemistry and biochemical fractionation reveal that 15-LOX2 is expressed at multiple subcellular locations, including cytoplasm, cytoskeleton, cell-cell border, and nucleus. Surprisingly, the three splice variants of 15-LOX2 we previously cloned, i.e. 15-LOX2sv-a/b/c, are mostly excluded from the nucleus. A potential bi-partite nuclear localization signal (NLS),203RKGLWRSLNEMKRIFNFRR221, is identified in the N terminus of 15-LOX2, which is retained in all splice variants. Site-directed mutagenesis reveals that this putative NLS is only partially involved in the nuclear import of 15-LOX2. To elucidate the relationship between nuclear localization, enzymatic activity, and tumor suppressive functions, we established PCa cell clones stably expressing 15-LOX2 or 15-LOX2sv-b. The 15-LOX2 clones express 15-LOX2 in the nuclei and possess robust enzymatic activity, whereas 15-LOX2sv-b clones show neither nuclear protein localization nor AA-metabolizing activity. To our surprise, both 15-LOX2- and 15-LOX2sv-b-stable clones proliferate much slower in vitro when compared with control clones. More importantly, when orthotopically implanted in nude mouse prostate, both 15-LOX2 and 15-LOX2sv-b suppress PC3 tumor growth in vivo. Together, these results suggest that both 15-LOX2 and 15-LOX2sv-b suppress prostate tumor development, and the tumor-suppressive functions apparently do not necessarily depend on AA-metabolizing activity and nuclear localization.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Arachidonate 15-Lipoxygenase / genetics
  • Arachidonate 15-Lipoxygenase / metabolism*
  • Genes, Tumor Suppressor
  • Humans
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Male
  • Prostate / enzymology*
  • Prostatic Neoplasms / enzymology*
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / pathology
  • RNA Splicing

Substances

  • Isoenzymes
  • ALOX15B protein, human
  • Arachidonate 15-Lipoxygenase