The aim of this investigation was the evaluation of the usefulness of N-vinyl pyrrolidone argon (VIPAR) polymer gel dosimetry for relative dose measurements using the majority of types and energies of radiation beams used in clinical practice. For this reason, VIPAR polymer gels were irradiated with the following beams: 6 and 23 MV photons (maximum dose: 15 Gy) and 6, 9, 12, 15, 18 and 21 MeV electrons (90% dose: 15 Gy). Using 6 MV x-rays, a linear gel dose response was verified for doses up to 20 Gy. Assuming linearity of response for the rest of the photon and electron beams used in this study, percentage depth dose measurements were derived. For all beams used and the range of relative doses studied, a satisfying agreement was observed between percentage depth dose measurements performed using the VIPAR gel-MRI method and an ion chamber, validating the assumption that a linear gel dose response holds for all photon and electron beams studied. VIPAR gels, therefore, can be used for relative dose distribution measurements using photons or electrons of any typical energy used in external radiotherapy applications. It is also demonstrated that two-dimensional dose distribution measurements through an irradiated (9 MeV electrons, 3 cm x 3 cm cone) VIPAR gel volume can be easily obtained.