Membrane ruffle formation requires remodeling of cortical actin filaments, a process dependent upon the small G-protein Rac. Growth factors stimulate actin remodeling and membrane ruffling by integration of signaling pathways that regulate actin-binding proteins. Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates the activity of many actin-binding proteins and is produced by the type I phosphatidylinositol phosphate kinases (PIPKIs). Here we show in MG-63 cells that only the PIPKIalpha isoform is localized to platelet-derived growth factor (PDGF)-induced membrane ruffles. Further, expression of kinase dead PIPKIalpha, which acts as a dominant negative mutant, blocked membrane ruffling, suggesting that PIPKIalpha and PIP2 participate in ruffling. To explore this, PIPKIalpha was overexpressed in serum-starved cells and stimulated with PDGF. In serum-starved cells, PIPKIalpha expression did not stimulate actin remodeling, but when these cells were stimulated with PDGF, actin rapidly reorganized into foci but not membrane ruffles. PIPKIalpha-mediated formation of actin foci was independent of both Rac1 and phosphatidylinositol 3-kinase activities. Significantly, coexpression of dominant active Rac1 with PIPKIalpha in PDGF-stimulated cells resulted in membrane ruffling. The PDGF- and Rac1-stimulated ruffling was inhibited by expression of kinase-dead PIPKIalpha. Combined, these data support a model where the localized production of PIP2 by PIPKIalpha is necessary for actin remodeling, whereas formation of membrane ruffles required Rac signaling.