Recent studies have shown that expression of the Staphylococcus aureus lrgAB operon inhibits murein hydrolase activity and decreases sensitivity to penicillin-induced killing. It was proposed that the lrgAB gene products function in a manner analogous to an antiholin, inhibiting a putative holin from transporting murein hydrolases out of the cell. In the present study the cidAB operon was identified and characterized based on the similarity of the cidA and cidB gene products to the products of the lrgAB operon. Zymographic and quantitative analyses of murein hydrolase activity revealed that mutation of the cidA gene results in decreased extracellular murein hydrolase activity compared to that of S. aureus RN6390, the parental strain. Complementation of cidA expression restored the wild-type phenotype, indicating that expression of the cidAB operon has a positive influence on extracellular murein hydrolase activity. The cidA mutant also displayed a significant decrease in sensitivity to the killing effects of penicillin. However, complementation of the cidA defect did not restore penicillin sensitivity to wild-type levels. Reverse transcriptase PCR also revealed that cidAB is maximally expressed during early exponential growth, opposite of what was previously observed for lrgAB expression. Based on these results, we propose that the cidAB operon encodes the holin-like counterpart of the lrgAB operon and acts in a manner opposite from that of lrgAB by increasing extracellular murein hydrolase activity and increasing sensitivity to penicillin-induced killing.