AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase

Circulation. 2003 Apr 1;107(12):1632-9. doi: 10.1161/01.CIR.0000058200.90059.B1. Epub 2003 Feb 24.

Abstract

Background: We recently identified agonistic autoantibodies directed against the angiotensin AT1 receptor (AT1-AA) in the plasma of preeclamptic women. To elucidate their role further, we studied the effects of AT1-AA on reactive oxygen species (ROS), NADPH oxidase expression, and nuclear factor-kappaB (NF-kappaB) activation.

Methods and results: We investigated human vascular smooth muscle cells (VSMC) and trophoblasts, as well as placentas. AT1-AA were isolated from sera of preeclamptic women. Angiotensin II (Ang II) and AT1-AA increased ROS production and the NADPH oxidase components, p22, p47, and p67 phox in Western blotting. We next tested if AT1-AA lead to NF-kappaB activation in VSMC and trophoblasts. AT1-AA activated NF-kappaB. Inhibitor-kappaBalpha (I-kappaBalpha) expression was reduced in response to AT1-AA. AT1 receptor blockade with losartan, diphenylene iodonium, tiron, and antisense against p22 phox all reduced ROS production and NF-kappaB activation. VSMC from p47phox-/- mice showed markedly reduced ROS generation and NF-kappaB activation in response to Ang II and AT1-AA. The p22, p47, and p67 phox expression in placentas from preeclamptic patients was increased, compared with normal placentas. Furthermore, NF-kappaB was activated and I-kappaBalpha reduced in placentas from preeclamptic women.

Conclusions: NADPH oxidase is potentially an important source of ROS that may upregulate NF-kappaB in preeclampsia. We suggest that AT1-AA through activation of NADPH oxidase could contribute to ROS production and inflammatory responses in preeclampsia.

MeSH terms

  • Adult
  • Angiotensin II / pharmacology
  • Animals
  • Autoantibodies / pharmacology*
  • Cells, Cultured
  • Enzyme Activation
  • Female
  • Humans
  • Mice
  • Muscle, Smooth, Vascular / drug effects
  • Muscle, Smooth, Vascular / enzymology
  • Muscle, Smooth, Vascular / metabolism
  • NADPH Oxidases / metabolism*
  • NF-kappa B / metabolism
  • Placenta / drug effects
  • Placenta / enzymology
  • Placenta / metabolism
  • Pre-Eclampsia / enzymology*
  • Pre-Eclampsia / immunology*
  • Pre-Eclampsia / metabolism
  • Pregnancy
  • Reactive Oxygen Species / metabolism
  • Receptor, Angiotensin, Type 1
  • Receptors, Angiotensin / agonists
  • Receptors, Angiotensin / immunology*
  • Trophoblasts / drug effects
  • Trophoblasts / enzymology
  • Trophoblasts / metabolism

Substances

  • Autoantibodies
  • NF-kappa B
  • Reactive Oxygen Species
  • Receptor, Angiotensin, Type 1
  • Receptors, Angiotensin
  • Angiotensin II
  • NADPH Oxidases