The aim of the present study was to investigate the most significant frequency components in electrocorticogram (ECoG) recordings in order to operate a brain computer interface (BCI). For this purpose the time-frequency ERD/ERS map and the distinction sensitive learning vector quantization (DSLVQ) are applied to ECoG from three subjects, recorded during a self-paced finger movement. The results show that the ERD/ERS pattern found in ECoG generally matches the ERD/ERS pattern found in EEG recordings, but has an increased prevalence of frequency components in the beta range.