CXCR1 and CXCR2 mediate migratory activities in response to IL-8 and other ELR+-CXC chemokines (e.g., GCP-2 and NAP-2). In vitro, activation of migration is induced by low IL-8 concentrations (10-50 ng/mL), whereas migratory shut-off is induced by high IL-8 concentrations (1000 ng/mL). The stimulation of CXCR1 and CXCR2 by IL-8 concentrations that result in migratory activation induced focal adhesion kinase (FAK) phosphorylation in a G(alpha)i-dependent manner. The expression of FRNK, a dominant negative mutant of FAK, perturbed migratory responses to the activating dose of 50 ng/mL IL-8. The migration-activating concentrations of 50 ng/mL GCP-2 and NAP-2 induced less potent migratory responses and FAK phosphorylation in CXCR2-expressing cells as compared with IL-8. These results indicate that FAK is phosphorylated, and required, for the chemotactic response under conditions of migratory activation by ELR+-CXC chemokines. In addition, FAK phosphorylation was determined following exposure to migration-attenuating concentrations of IL-8. In CXCR1-RBL cells this treatment resulted in FAK phosphorylation, in similar levels to those induced by activating concentrations of IL-8. In contrast, in CXCR2-RBL cells the migration-attenuating concentrations of IL-8 induced promoted levels of FAK phosphorylation and different patterns of FAK phosphorylation on its six potential tyrosine phosphorylation sites, as compared to activating concentrations of the chemokine. Exposure to IL-8 resulted not only in FAK phosphorylation but also in its cellular redistribution, indicated by the formation of defined contact regions with the substratum, enriched in phosphorylated FAK and vinculin. Overall, FAK phosphorylation was associated with, and found to be differently regulated upon, ELR+-CXC chemokine-induced migration.