Despite technical and mechanical improvement in coronary stents the incidence of restenosis caused by in-stent neointimal hyperplasia remains high. Oral administration of numerous pharmacological agents has failed to reduce restenosis after coronary stenting in humans, possibly owing to insufficient local drug concentration. Therefore, drug-eluting stents were developed as a vehicle for local drug administration. The authors developed a new drug-eluting polymer stent that is made of poly-l-lactic acid polymer mixed with tranilast, an anti-allergic drug that inhibits the migration and proliferation of vascular smooth muscle cells induced by platelet-derived growth factor and transforming growth factor->1. Polymer stents might be superior to polymer-coated metallic stents as local drug delivery stents in terms of biodegradation and the amount of loaded drug. Drug-mixed polymer stents can be loaded with a larger amount of drug than can drug-coated metallic stents because the polymer stent struts can contain the drug. Clinical application is required to assess the safety and efficacy of drug-eluting polymer stents against stent restenosis.