Objective: To demonstrate the changes in gap junctional intercellular communication (GJIC) mediated by low power density microwave radiation in rabbits lens epithelial cells (LECs) and its mechanisms.
Methods: Rabbits' eyes were exposed to 5 mW/cm(2) and 10 mW/cm(2) power densities of microwave radiation for 3 hours. The fluorescence-recovery-after-photobleaching (FRAP) method was used to determine the GJIC. The localization and function of connexin 43 in LECs was detected by laser scanning confocal microscopy.
Results: The GJIC of rabbits LECs was inhibited by microwave radiation especially in the 10 mW/cm(2) irradiated samples. A decrease in connexin 43-positive staining was seen in 5 mW/cm(2) x 3 h treated LECs. Intracellular space accumulation and cytoplasmic internalization were clearly demonstrated in 10 mW/cm(2) group.
Conclusions: Low power densities microwave radiation (5 mW/cm(2) and 10 mW/cm(2)) induces damage to connexin 43 and inhibits the GJIC of rabbits LECs. These changes result in an osmotic imbalance within the lens and induce early cataract. 5 mW/cm(2) or 10 mW/cm(2) microwave radiation is cataractogenic.