The binding of sigma factors to core RNA polymerase is essential for the specific initiation of transcription in eubacteria and is thus critical for cell growth. Since the responsible protein-binding regions are highly conserved among all eubacteria but differ significantly from eukaryotic RNA polymerases, sigma factor binding is a promising target for drug discovery. A homogeneous assay for sigma binding to RNA polymerase (Escherichia coli) based on luminescence resonance energy transfer (LRET) was developed by using a europium-labeled sigma70 and an IC5-labeled fragment of the beta' subunit of RNA polymerase (amino acid residues 100 through 309). Inhibition of sigma binding was measured by the loss of LRET through a decrease in IC5 emission. The technical advances offered by LRET resulted in a very robust assay suitable for high-throughput screening, and LRET was successfully used to screen a crude natural-product library. We illustrate this method as a powerful tool to investigate any essential protein-protein interaction for basic research and drug discovery.